Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Samil Ișık, ${ }^{\text {a }}$ Bahittin Kahveci, ${ }^{\text {b }}$ Erbil Ag̃ar ${ }^{\text {c }}$ and Selami STș̦maz ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, 55139 Samsun, Turkey, ${ }^{\mathbf{b}}$ Department of Chemistry, Rize Art and Science Faculty, Karadeniz Teknik University, Rize, Turkey, and ${ }^{\text {c }}$ Department of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, 55139 Samsun, Turkey

Correspondence e-mail: samili@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.037$
ωR factor $=0.107$
Data-to-parameter ratio $=19.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

4-(p-Fluorobenzylideneamino)-3-methyl-4,5-dihydro-1H-1,2,4-triazol-5-one

The molecule of the title compound, $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{FN}_{4} \mathrm{O}$, is almost planar. In the $1,2,4$-triazole moiety, the $\mathrm{C}=\mathrm{N}, \mathrm{C}-\mathrm{N}$ and $\mathrm{N}-\mathrm{N}$ bond lengths are normal. The crystal structure is stabilized by intra- and intermolecular hydrogen bonds.

Comment

1,2,4-Triazole compounds are a relatively new group of Schiff bases; they possess significant antibacterial, anticancer, antiinflammatory and antitoxic activity (Williams, 1972; McCarrick et al., 1999; Liu et al., 1999). In order to provide information about structure-activity relationships in a series of similar complexes, the crystal structure of the title compound, (I), synthesized by Kahveci \& Ikizler (2000), is presented here.

(I)

A perspective view of the molecule of (I) with the atomic numbering is shown in Fig. 1. In the 1,2,4-triazole moiety, the bond lengths are normal. The $\mathrm{C}-\mathrm{N}, \mathrm{C} 2=\mathrm{N} 3$ and $\mathrm{N} 2-\mathrm{N} 3$ bonds are in good agreement with the values found by Işık et al. (2003). The other bond lengths generally agree well with those found in the crystal structures of 1,2,4-triazole derivatives (Ocak et al., 2003).

In the molecule of (I), both rings are planar within experimental error and the largest deviation of 0.003 (2) \AA is for atom N3 of the triazole ring. Meanwhile, atoms F1, C3 and O1 lie almost in the ring plane, with a maximum deviation of 0.016 (2) \AA for atom F1. Also, the dihedral angle between the $\mathrm{C} 5-\mathrm{C} 10$ ring and $1,2,4$-triazole ring is $6(1)^{\circ}$. These results show that the compound is almost planar.

In addition, the crystal structure is stabilized by intra- and two intermolecular hydrogen bonds. Crystal packing involves $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ and $\mathrm{N}-\mathrm{H} \cdots$ - type hydrogen bonds, resulting in an infinite network structure. Also, the compound has CH. . O-type intramolecular hydrogen bonds. Details of these interactions are give in Table 2.

Experimental

The corresponding N-amino compound (0.01 mol) was heated with 4-fluorobenzaldehyde ($1.04 \mathrm{ml}, 0.01 \mathrm{~mol}$) in an oil bath at 448 K for 1 h . After cooling, the resulting solid was recrystallized from ethanol (yield; 84%) to afford the desired compound (I). M.p. 506-507 K. Calculated: C 54.54, H 4.12, N 25.44\%; found: C 54.16, H:4.16, N

Received 9 May 2003
Accepted 11 June 2003 Online 24 July 2003
25.14\%. IR data ($\mathrm{KBr} \mathrm{cm}^{-1}$): $3190(\mathrm{~N}-\mathrm{H}), 1715(\mathrm{C}=\mathrm{O}), 1605,1565$ $(\mathrm{C}=\mathrm{N}), 840$ (aromatic). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, \delta\right.$ p.p.m.) $2.40\left(\mathrm{CH}_{3}, s\right.$, $3 \mathrm{H}), 9,76(\mathrm{CH}, s, 1 \mathrm{H}), 11.90(\mathrm{NH}, s, 1 \mathrm{H}), \mathrm{Ar}-\mathrm{H}: 7.00-7.80(m, 4 \mathrm{H})$.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{10} \mathrm{H}_{9} \mathrm{FN}_{4} \mathrm{O} \\
& M_{r}=220.21 \\
& \text { Monoclinic, } P 2_{\mathrm{d}} / c \\
& a=7.0012(8) \AA \\
& b=13.8430(12) \AA \\
& c=11.1307(11) \AA \\
& \beta=106.572(8)^{\circ} \\
& V=1033.95(18) \AA^{3} \\
& Z=4
\end{aligned}
$$

Data collection

Stoe IPDS-II diffractometer ω scans
Absorption correction: none 10015 measured reflections 2861 independent reflections 1657 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$D_{x}=1.415 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 8026 reflections
$\theta=1.5-29.5^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.40 \times 0.37 \times 0.30 \mathrm{~mm}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.107$
$S=0.89$
2861 reflections
147 parameters
H-atom parameters constrained

Figure 1
The structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. The hydrogen bond is shown with dashed lines.

Figure 2
A packing diagram of the title compound, illustrating the hydrogenbonding network.

References

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Işık, Ş., Kahveci, B., Ağar, E., Şaşmaz, S. \& Vázquez-López, E. M. (2003). Acta Cryst. E59, o804-o805.
Kahveci, B. \& Ikizler, A. A. (2000). Turk. J. Chem. 24, 343-351.
Liu, Y.-F., Chantrapromma, S., Shanmuga Sundara Raj, S., Fun, H.-K., Zhang,
Y.-H., Xie, F.-X., Tian, Y.-P. \& Ni, S.-S.. (1999). Acta Cryst. C55, 93-94.

McCarrick, R. M., Squattrito, P. J., Singh, R. N., Handa, R. N. \& Dubey, S. N. (1999). Acta Cryst. C55, 2111-2114.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Ocak, N., Çoruh, U., Kahveci, B., Şaşmaz, S., Ag̃ar, E., Vázquez-López, E. M. \& Erdönmez, A. (2003). Acta Cryst. E59, o1-o3.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X-AREA. Stoe \& Cie GmbH, Darmstadt, Germany.
Williams, D. R. (1972). Chem. Rev. 72, 203-213.

